Beginning CA-Visual Objects: a “Hands On” Approach

William C. Moore Jr. (Willie)

CA-World 2002
Data Management and Application Development

DAV03LN

Introduction

RAD (Rapid Application Development) techniques can be implemented out of the box with CA-Visual Objects. This paper will describe the tools available and will walk you through creating a CA‑Visual Objects application.

The Structure of CA-Visual Objects

CA-Visual Objects is a compiler that produces native code that runs on x86 systems. It uses a repository to hold information about programs currently in the development process. A repository offers you several benefits.

1. All of the code needed to run your system is stored in one central place

2. If you made a change in a library, it is immediately cascaded down showing you which modules need to be recompiled.

3. The repository gives you an easy way of organizing your code. (It supports long names.)

The Repository

The repository is broken down into several hierarchical sections. The following paragraphs describe each of the sections.

The Project:

At the highest level is the project. As its name suggests, the project is the top level. The only limit to the number of projects that CA-Visual Objects can track is available disk space.

The Application:

The next level down is the application level. Each project may contain multiple applications. An application can be defined as one of the following:

· An executable (something that you distribute to your clients)

· A DLL / ActiveX component (you usually distribute this to your clients)

· A Library (you usually do NOT distribute this to your clients)

The Module:

The module layer falls inside the program. Here is where we will organize our program. Each application can contain multiple modules. Be descriptive. CA-Visual Objects allows long names. However, there are rules. As CA-Visual Objects also interfaces with Microsoft’s Source Safe, it has to follow Source Safe’s naming conventions. Here are the characters that you cannot use inside a module name: “ / . : ”

The Entity:

At the lowest level is the entity. Just as the application can contain many modules, each module may contain many entities. Entities use editors to get source, etc. into the repository. Here are the editors that are available:

· Source Code Editor

· Windows Editor

· DBServer / SQL Server Editor

· Image Editor

· Menu Editor

Figure 1 shows the Repository Explorer:

[image: image1.jpg]
Figure 1 - Repository Explorer

Our First App

Now it is time to start working with CA-Visual Objects. However, we need a place to put our application. So, we have to create a project. To create a project, simply highlight the Visual Objects 2.5 prompt in the treeview and click your right mouse button. This will pop up a menu. Select “New Project” and the following box will appear:

[image: image2.jpg]
Figure 2 - Create Project

Type in the above text and click OK. CA-Visual Objects does all the work! You will have a new project for your application.

Now we can highlight the eBusiness project and use our right mouse click again. This time we want to select “New Application”. The following screen will come up:

[image: image3.jpg]
Figure 3 - Creating a New Application

There is one thing that we will want to change here. Instead of calling this Application, we will call it “Workshop”. When you click on the OK button, you will have a new application.

What Does it Do?

At first appearances, it does not look like much. But, there are a lot of things that CA-Visual Objects has done for you.

1. CA-Visual Objects has set up a basic menu structure that you can add or change to fit your needs.

2. CA-Visual Objects has included a “Splash Screen” to keep your users occupied while the application loads.

3. CA-Visual Objects has included the ability to access Jasmine databases.

4. CA-Visual Objects has included a “Send Mail” function (this only works if you have the Microsoft Exchange client loaded).

5. CA-Visual Objects has included an “About Box”.

Compiling Our Code:

Now that we have created the “Basic Application “ we need to compile it. As shown by the following figure, if we click on the compile icon, CA-Visual Objects will compile our application and report any errors or warnings.

[image: image4.jpg]
Figure 4 - Compiling Our Code

The red Xs in the figure represent code that has not yet been compiled. Upon a clean compile, the Xs will go away. A clean compile will also let us run the application.

Running Our Application

Now that we have a clean compile, lets run the application. As shown by the following figure, run our application by moving our mouse over two icons to the right.

[image: image5.jpg]
Figure 5 - Running Our Application

Here is what we get with the Standard CA-Visual Objects Application. I have brought up the “Help About” box to show a window:

[image: image6.jpg]
Figure 6 - Standard MDI Application

CA-Visual Objects comes with many examples. A bit later, we will explore the basic application as we start construction of our sample application.
It is important to point out here that the Standard MDI application is a fully functioning CA-Visual Objects application. We will now build upon this to show how easy it is to add to a CA-Visual Objects application.

Menus

One thing that most users will see first is your menus. CA-Visual Objects has a menu editor that makes creating menus a snap. When we created the Standard MDI Application, CA-Visual Objects automatically created a module called “Standard Menus”. If you look inside that module, you will see many entities. The two that we are concerned with right now are “EmptyshellMenu” and “StandardShellMenu”. EmptyShellMenu is the default menu that is called up when the program starts. It contains all of the items accessible when there are no data windows open. StandardShellMenu on the other hand contains all of the items available while a data window is open. These are usually all of the EmptyShellMenu items plus the Edit items (Cut/Copy/Paste).

Editing EmptyShellMenu

To edit the EmptyShellWindow, simply double click the entity. You will get a box that looks like this:

[image: image7.wmf]

Figure 7 - Menu Editor

In figure 7, I have spread things out where you can see most of the available items. We have the menu shown before us. There is also a property box. This is an important item. The properties control gets executed when someone clicks on a menu item. Just below the EmpyShellMenu caption, you will find the menu preview. That will show you what the completed menu will look like.

Adding a Menu Item

Adding a menu item in CA-Visual Objects is quite easy. We click on the line where we want to add the menu item and press the enter key. This gives us a new empty item. If we want to change its position, we can use the arrow keys in the toolbar area to change the level of the menu item. At this point, let’s make a new item.

Steps:

1. Position our mouse to the line above “E&xit”.
2. Press Enter to create the blank item.

3. Type My FirstMenu Item but do not press Enter.

4. In the properties window, click on the “Event” property.

5. Type myDataWindow and the hit the Tab key.
6. Click on the X in the upper right of the Menu Editor to exit the Menu Editor.

7. Answer “Yes” to save the items.

When we compile and run the application, we have a new menu item. Unfortunately, it does not do anything! Menus need events.

Events

An event get executed when you click on a menu item. It can be several things:

1. A CA-Visual Objects event such as Endwindow.

2. A method to execute.

3. A Data or Dialog window to execute.

For now, we are going to stick to item 3. We will be using data windows.

Data Windows

The data window can be compared to a Visual Basic form. Like a VB form, it can contain controls. But, unlike a VB form, the CA-Visual Objects data window contains a data server object. This data server can be Xbase, SQL, or Jasmine. However, CA-Visual Objects does not force you to have a data server to use a data window. It is just an option waiting to be used.

Before we create our first data window, we need to create a place to put it. If you place everything in the same module, things will quickly get out of hand and make the project unmanageable. If you look at the Standard MDI Application, you will see that everything is organized into descriptive modules. As a general rule, each data window should be placed into its own module.

Creating a Module

To create a new module, follow these simple steps:

1. Highlight our application (Workshop) and click your right mouse button.

2. Select “New Module” from the popup menu.

3. Type in the module name (myDataWindow).

4. Click OK to create the module.

[image: image8.jpg]
Figure 8 - Creating a Module

With our module complete, we can now call up the data window editor. To enter the data window editor, we will first highlight our module, the use our right mouse button to call up the popup menu. As the following figure shows, we are aiming for the Window Editor.

[image: image9.jpg]
Figure 9 - Calling Up the Window Editor

One we click on Window Editor, we have several choices, as shown in figure 10. We are interested in the data window and will name it myDataWindow.

[image: image10.jpg]
Figure 10 - Create a Window Dialog

Once we click OK, we are presented with the editor. The data window editor is where we will visually draw our form. As shown in figure 11, we have three basic windows open:

1. The form itself.

2. A window containing the controls we can place on the form.

3. The Properties window. This window contains the properties of whatever object is currently selected.

[image: image11.jpg]
Figure 11 - Empty Data Window

Adding Buttons

Buttons are a basic control. However, most applications rely on the buttons to perform functions such as form validation, saving data, or canceling data entry. We will now add two buttons to our form, an “OK” button and a “Cancel” button. To do this, we will use a technique called “Drag and Drop”. We will click on the button icon in the controls window and drag it onto our form. Repeating the will give us our two buttons.

Naming the Buttons

Now that we have our buttons on our form, we have to name them. I use the following prefix when naming buttons: “pb” followed by the button’s name. It makes it easier to follow in the source. To name a button follow these steps:

1. Highlight the button you want to name.

2. Click on the Properties window.

3. Click on the Caption property.

4. Type “&Ok” for the OK Button.

5. Click on the Name property.

6. Type “pbOkbutton”.

Repeat the same steps for the Cancel button, replacing “&Cancel” for the Caption and “pbCancelbutton” for the Name.

[image: image12.jpg]
Figure 12 - Button Properties

Button Events

Buttons respond to events the same as menus. The most common event that you will tap into is the “Click” event. If we select the Cancel button (by clicking on it), then select the Properties window (by clicking on it), and finally select the General tab, we can see the different events we can control. Figure 13 shows the properties. We can define our click event by clicking on the “…” beside the Click Event property.

[image: image13.jpg]
Figure 13 - Button Properties General Tab

Adding Code to Our Button

Clicking on the “…” calls up the Source Code Editor. We will keep our first code simple, so please type the following:

Self:endwindow()

When you close the source code window, the “Not Defined” in the Click Event will change to “Defined”. While that one line of code does not appear to be substantial, it will cause the data window to close. Now we can create windows and close them.

Creating the Items Window

At this point in the application development, we will create a second window, this time a dialog window. The steps are the same as creating a data window except we will call it “Items” and it is a dialog window instead of a data window. We will also add the same two buttons as we did in the myDataWindow (pbOkButton and pbCancelbutton).

Importing Code

There are many times where you already have some source code that you want to reuse. CA-Visual Objects makes it easy to import this code. Follow these steps to import a module:

1. Click on any existing module in the Application you want to import into.

2. Click on File (form the top menu) and select Import. The box shown in figure 14 will pop up.

3. Select the module import file (ending in the extension mef) and click OK.

[image: image14.jpg]
Figure 14 - Importing a Module

We will import two files at this time. They will be located in the c:\workshop directory. The names are:

· myDataWindowCode.MEF

· searchWindow.MEF

Back to the Application

Now that we have had a look at CA-visual Objects, how can we access data? The answer is in the windows we started earlier, the Order window and the Item window. Earlier in this paper I talked about events and how they related to buttons. Windows uses messages to communicate keystrokes, mouse clicks, etc. to the programs running under it. We can take advantage of these events to trigger code used to access any type of data.

myDataWindow (the Order window)

Figure 16 shows the completed order window. At this point we are going to have to add all of the controls. CA-Visual Objects made this easy. We just drag the controls from the control palette and drop them onto the form. Here are the fields that we are going to place and their type and names:

	Type
	Name
	Caption

	Fixed Text
	FixedText1
	Customer

	SingleLineEdit
	cCustomer
	

	ListBox
	lvItems
	

	Button
	pbAddbutton
	Add

	Fixed Text
	fttotal
	Total :

	SingleLineEdit
	slenTotal
	

	Group Box
	GroupBox1
	Items

We want to make the screen look as close to Figure 16 as possible. Again, to name a control, we go to the Properties window, select the HyperLabel tab and click on Name. We can then enter the name of the field.

[image: image15.jpg]
Figure 16 - Completed Order Window

Controlling the Order

Once we have the fields on the screen, we want to control the order that they are accessed (if the user uses the tab key to move between fields). Figure 17 shows the Control Order window. Hitting the Edit Menu then the Control Order selection accesses it.

[image: image16.jpg]
Figure 17 - Controlling the Order of Fields

Adding the Jasmine Hook

The first SingleLineEdit control is the one that we are going to tap into. If we go to the Properties window, General tab, we are going to put an entry into “inherit from”. The entry will be searchSLE. The searchSLE is a specialized subclass I wrote that allows the programmer to design a search screen. The guts of the search method was discussed in the Jasmine ii section of this paper. But what if the user tabs out of the field without putting anything into the Customer field? We handle this through a Windows event called the EditFocusChange. Below is the EditFocusChange method of myDatawindow.

METHOD EditFocusChange(oEditFocusChangeEvent) CLASS myDatawindow

LOCAL oControl AS Control

LOCAL lGotFocus AS LOGIC

LOCAL lValid AS LOGIC

oControl := IIF(oEditFocusChangeEvent == NULL_OBJECT, NULL_OBJECT, oEditFocusChangeEvent:Control)

lGotFocus := IIF(oEditFocusChangeEvent == NULL_OBJECT, FALSE, oEditFocusChangeEvent:GotFocus)

SUPER:EditFocusChange(oEditFocusChangeEvent)

//Put your changes here:

DO CASE

// Check for valid site code and pop up help browser if needed:

CASE oControl == oDCslecCustomer

IF !lGotFocus .and. !Empty(oControl:textvalue)

IF SELF:oCustomer != NULL_OBJECT

lValid := TRUE

ELSE

lValid :=

SELF:sleCustomerSearch(ocontrol,ocontrol:TextValue,FALSE)

ENDIF

IF lValid

SELF:oDCslecCustomer:disable()

SELF:oCCpbAddButton:enable()

SELF:oDCslentotal:enable()

SELF:oDClvItems:enable()

SELF:oDCftTotal:enable()

SELF:oCCpbOKButton:enable()

SELF:populate()

// fill the listview

// with any existing

// order info

SetFocus(oCCpbAddbutton:handle())

ENDIF

ENDIF

ENDCASE

RETURN NIL

What we find out by looking at this code is that we only enable the other controls if a customer was selected (we can deduce this from the other controls being enabled if lValid). However, if they typed something in, we invoke the search method to get a valid customer. Once we have a valid customer, we call the populate method to fill the list view with an existing order (if there is one).

We use the pbAddButton to link the Customer form with the Items window with the following code:

METHOD pbAddbutton() CLASS myDataWindow

LOCAL oItems
AS items

LOCAL oLVI

AS listviewitem

LOCAL nsubTotal
AS REAL8

LOCAL nPrice
AS REAL8

oItems := items{SELF:owner}

oItems:show()

IF oItems:lOK

 // process the item

 nSubTotal
:= Val(slenTotal)

 oLVI
:= ListViewItem{}

oLVI:SetText(SELF:SetCorrectValue(oItems:oItem:GetProperty('catalognumber')),#Passage)

oLvI:SetText(SELF:SetCorrectValue(oItems:oItem:GetProperty('name')), #Description)

oLvI:SetText(SELF:SetCorrectValue(oItems:oItem:GetProperty('color')), #Color)

oLvI:SetText(SELF:SetCorrectValue(oItems:oItem:GetProperty('fit')),#Size)

 nPrice := oItems:oItem:GetProperty('price')

 nSubTotal += nPrice

 oLvI:SetText(SELF:SetCorrectValue(nPrice),#Price)

 SELF:oDClvItems:AddItem(oLvi)

 SELF:calculate(nSubTotal)

ENDIF

RETURN NIL

This is what I like to call “Glue Code”. It is that dirty part of the application that you have to write to glue the different forms together.

The Items Window

Now that we have a functioning Order window, we have to finish our Items window. Figure 18 shows the completed Items window. As with the Orders window, we have to add the fields to the Items window to make this complete. The following table will tell you the type and name for each field you will be adding to the form.

	Type
	Name
	Caption

	Fixed Text
	FixedText1
	Description :

	FixedText
	FixedText2
	Item Number :

	FixedText
	FixedText3
	Color :

	FixedText
	FixedText4
	Season :

	FixedText
	FixedText5
	Fabric :

	FixedText
	FixedText6
	Fit :

	FixedText
	FixedText7
	Price :

	SingleLineEdit
	SlecItem
	

	SingleLineEdit
	SlecCatalogNumber
	

	SingleLineEdit
	SlecColor
	

	SingleLineEdit
	SlecSeason
	

	SingleLineEdit
	SlecFabric
	

	SingleLineEdit
	SlecFit
	

	SingleLineEdit
	SlenPrice
	

	Group Box
	GroupBox1
	Item Information

[image: image17.jpg]
Figure 18 - Items Window

Controlling the Order

As with the Order window, we have to bring the fields into a logical order. Here is the Control Order for the Items window:

[image: image18.jpg]
Figure 19 - Items Control Order

Adding the Hook

As with the Order window, we hook into the first SingleLineEdit control. We again set the “inherit from” property to “searchSLE”. We also use the EditFocusChange method to look up the Item from Jasmine ii. The glue is in the pbOKButton method. We set the lOK instance variable to TRUE, signifying that we have an item, and send the user back to the Order window, where the listbox is updated with the newly added item.

Writing Back to the database
So far, we have simply read from our database, looked up items, and filled up a list view with the results. If the user decides to save this order, we will have to write the new items back into our database. Again we take advantage of the OK Button’s click to add this code:

METHOD pbOKButton() CLASS myDataWindow

LOCAL I

AS INT

LOCAL oLVI

AS ListViewItem

LOCAL cCatalog
AS STRING

LOCAL sClassName
AS STRING

LOCAL oClass

AS jclass

LOCAL oItem

AS OBJECT

 AltD()

sClassName
:= "CAStore::Piece"

oClass

:= jClass{goSession,sClassName}

FOR I := 1 UPTO oDClvItems:ItemCount

IF I > SELF:LastLineItem

oLVI := oDClvItems:GetNextItem(LV_GNIByItem, , , , , I - 1)

//perform the calculations....

cCatalog := oLVI:GetText(#Passage)

oItem
:= oClass:FindObjectByProp("catalognumber",cCatalog)

IF oItem != NULL_OBJECT

SELF:oCustomer:addorder(oItem)

ENDIF

ENDIF

NEXT

SELF:endwindow()

While this appears to be very little code, it does quite a bit. The code loops through the list view looking for new items. If there are new items, it will add the items to Jasmine using the following server side method:

self:oCustomer:addorder(oItem)

Once we have added all of the items, we end the window with the endwindow() method.

Conclusion

This paper has presented the tools that come out of the box with CA-Visual Objects. It has also shown how these tools can be used to integrate forms and data. With these tools and a little bit of coding, we have demonstrated how simple it can be to write applications with CA-Visual Objects.
Willie Moore is a TIM (Transport Infrastructure Manager) for Bellsouth Telecommunications, Inc located in Birmingham, Alabama. He is also the owner of wmConsulting. He has been programming in CA-Clipper since Summer ’87 and has been producing applications in CA-Visual Objects since release 1.0. He is a Microsoft Certified Systems Engineer and a Microsoft Certified Trainer. Willie can be reached on the Internet at williem@wmConsulting.com .

12 DAV03LN

Beginning CA-Visual Objects – A Hands on Approach 13

_1012106308.doc
[image: image1.png]

